
1. Exercises from Sections 2.7-2.9

Problem 1. (Folland 2.7.3) Show that | sin(x)− x+ x3/6| < 0.08 for all |x| < π/2

(1) Notice that x3 − x3/6 is the fourth order Taylor approximation of sin(x) about zero

(2) Since sin(x) is smooth (therefore Ck for all k ∈ N), we may use thm. 2.55:

Ra,k(h) =
hk+1

k!

∫ 1

0

(1− t)kf (k+1)(a+ th) dt

(3) d5(sin(x))/dx5 = cos(x), and | cos(th)| < 1 for all |th| < π/2

(4) Estimating gives:

|R0,4(h)| ≤ h5

24

∫ 1

0

(1− t)5| cos(th)| dt < h5

24

∫ 1

0

(1− t)5 dt =
h5

24

1

6
<

π5

25 · 144
∼ 0.066 < 0.08

Problem 2. (Folland 2.8.3/4)

Last week we looked at an example of a non-degenerate critical point (the height function on the

sphere). We saw that we can use the eigenvalues of the Hessian to determine whether a function has

a maximum, minimum, or a saddle at a critical point. Now let’s look at some examples to see how

behaviour of a function near a degernate critical point can be more complicated.

1) Degenerate critical points can still be local extrema, f1(x, y) = x2 + y4: Compute ∇f1 = 2x∂x +

4y3∂y = 0 if and only if x = 0 and y = 0, so we have a critical point at the origin. Finding the Hessian:

∂f1
∂x∂y

= 0,
∂2f1
∂x2

= 2,
∂2f1
∂y2

= 12y2

So at the origin,

∂2f1
∂xi∂xj

=

(
2 0

0 0

)
Therefore the critical point is degenerate because the Hessian has a zero eigenvalue. We now claim

that the origin is a local minimum for f1(x, y). Indeed, f1(0, 0) = 0 while x2 > 0 and y2 > 0 for all

(x, y) ∈ R2\ {(0, 0)}.
2) Degenerate critical points can be “saddle-like”, f2(x, y) = x2 − y4: Doing the same computation

as before,

∇f2 = 2x∂x − 4y3∂y = 0 ⇔ (x, y) = (0, 0)

∂2f2
∂xi∂xj

=

(
2 0

0 0

)
So again, the critical point is degenerate. For any fixed x0, as y → ±∞ we have limy→±∞ f2(x0, y) = −∞,

while for any fixed y0, limx→±∞ f2(x, y0) =∞. Near the origin, then, f2(x, y) decreases in either of the

y-directions, while it increases in either of the x-directions

3) Degenerate critical points can be isolated, but we can say nothing about the local behaviour,

f3(x, y) = x2 − y3:

∇f3 = 2x∂x − 3y2∂y = 0 ⇔ (x, y) = (0, 0)

So again, f3 has an isolated critical point at the origin, and the Hessian at this point is:

∂2f2
∂xi∂xj

=

(
2 0

0 0

)
So the critical point is degenerate. Now notice that if we fix x0, then f(x0, y) → ∞ as y → −∞, while

f(x0, y) → −∞ as y → ∞. This means that at the origin, f3(x, y) behaves “non-degenerately” in the

x-direction, while in the y-direction, the function can increase or decrease depending on whether or not

we choose to increase or decrease y!
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4) Degenerate critical points need not be isolated, f4(x, y) = x2: This is a critical difference between

the non-degenerate case and the degenerate case.

∇f4 = 2x∂x ⇔ (x, y) = (0, y) ∀ y ∈ R

5) Degenerate critical points can look like a minimum in any direction, but still not be a local

minimum for the function, f5(x, y) = (y− x2)(y− 2x2): Let (at, bt) be any line through the origin, then

g(t) = f5(at, bt) = (bt− a2t2)(bt− 2a2t2)

g′(t) = (b− 2a2t)(bt− 2a2t2) + (bt− a2t2)(b− 4a2t)⇒ g′(0) = 0

g′′(t) = −2a2(bt− 2a2t2) + (b− 2a2t)(b− 4a2t) + (b− 2a2t)(b− 4a2t)− 4a2(bt− a2t2)⇒ g′′(0) = 2b2 > 0

So by the second derivative test, g(t) has a minimum at zero for any line passing through the origin.

Now we can see that (0, 0) is not any local minimum for f5(x, y), even though it is a minimum

for any line passing through the origin. First, calculate that f(0, 0) = 0. Now, see that f5(x, y) > 0

if and only if y < x2 or y > 2x2, and f5(x, y) < 0 if and only if y > x2 and y < 2x2. Let S ={
(x, y) ∈ R2 | f5 > 0 or f5 < 0

}
Draw picture

Recall that a point (x0, y0) is a local minimum for f5 if and only if there exists a neighbourhood U

around (x0, y0) such that f(x, y) > f(x0, y0) for all (x, y) ∈ U . Notice that this could never be the case,

for f(0, 0) = 0 and (0, 0) ∈ ∂S implies that any ball Bε(0, 0) has points in it such that f(x, y) < 0.

Exercise 1.1. Suppose that S ⊆ Rn is compact, and f : S → R is a smooth function with non-

degenerate critical points. Explain why f can only have finitely many critical points.

Problem 3. (Folland 2.9.19) Let A be a symmetric n×n matrix, and let f(x) = xTAx for x ∈ Rn.

Show that the maximum and minimum of f on the unit sphere |x|2 = 1 are the largest and smallest

eigenvalues of A.

(1) Proceed by method of Lagrange multipliers

(2) Want to find extrema of f(x) subject to the constraint |x|2 = 1

(3) Write f(x) =
∑
ij Aijxixj and let G(x) = 1−

∑
i x

2
i

(4) The condition to optimize f subject to G is given by:

∇f = λ∇G

(5)

∇f = ∂kf =
∑
ij

(Aijδikxj +Aijδjkxi) =
∑
j

Akjxj +
∑
i

Aikxi = 2
∑
j

Akjxj = 2Ax

∇G = ∂kG =
∑
i

2xiδik = 2xk

(6) Then the condition for extremizing f is that Ax = λx

(7) Since A is symmetric, it is diagonalizable, so pick an orthonormal basis {yj} of Rn consisting

of eigenvectors of A; so Ayj = λjyj .

(8) In this basis, we may write x =
∑
j cjyj , so that f(x) = xTAx =

∑
i c

2
iλi

(9) Now it is clear that the extrema have values f(yj) = λj , and thus the global max and min of

f are the largest and smallest eigenvalues of A, respectively.


