1. Exercises from Sections 2.7-2.9

Problem 1. (Folland 2.7.3) Show that $\left|\sin (x)-x+x^{3} / 6\right|<0.08$ for all $|x|<\pi / 2$
(1) Notice that $x^{3}-x^{3} / 6$ is the fourth order Taylor approximation of $\sin (x)$ about zero
(2) Since $\sin (x)$ is smooth (therefore C^{k} for all $k \in \mathbb{N}$), we may use thm. 2.55:

$$
R_{a, k}(h)=\frac{h^{k+1}}{k!} \int_{0}^{1}(1-t)^{k} f^{(k+1)}(a+t h) d t
$$

(3) $d^{5}(\sin (x)) / d x^{5}=\cos (x)$, and $|\cos (t h)|<1$ for all $|t h|<\pi / 2$
(4) Estimating gives:

$$
\left|R_{0,4}(h)\right| \leq \frac{h^{5}}{24} \int_{0}^{1}(1-t)^{5}|\cos (t h)| d t<\frac{h^{5}}{24} \int_{0}^{1}(1-t)^{5} d t=\frac{h^{5}}{24} \frac{1}{6}<\frac{\pi^{5}}{2^{5} \cdot 144} \sim 0.066<0.08
$$

Problem 2. (Folland 2.8.3/4)
Last week we looked at an example of a non-degenerate critical point (the height function on the sphere). We saw that we can use the eigenvalues of the Hessian to determine whether a function has a maximum, minimum, or a saddle at a critical point. Now let's look at some examples to see how behaviour of a function near a degernate critical point can be more complicated.

1) Degenerate critical points can still be local extrema, $f_{1}(x, y)=x^{2}+y^{4}$: Compute $\nabla f_{1}=2 x \partial_{x}+$ $4 y^{3} \partial_{y}=0$ if and only if $x=0$ and $y=0$, so we have a critical point at the origin. Finding the Hessian:

$$
\frac{\partial f_{1}}{\partial x \partial y}=0, \frac{\partial^{2} f_{1}}{\partial x^{2}}=2, \frac{\partial^{2} f_{1}}{\partial y^{2}}=12 y^{2}
$$

So at the origin,

$$
\frac{\partial^{2} f_{1}}{\partial x_{i} \partial x_{j}}=\left(\begin{array}{cc}
2 & 0 \\
0 & 0
\end{array}\right)
$$

Therefore the critical point is degenerate because the Hessian has a zero eigenvalue. We now claim that the origin is a local minimum for $f_{1}(x, y)$. Indeed, $f_{1}(0,0)=0$ while $x^{2}>0$ and $y^{2}>0$ for all $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.
2) Degenerate critical points can be "saddle-like", $f_{2}(x, y)=x^{2}-y^{4}$: Doing the same computation as before,

$$
\begin{gathered}
\nabla f_{2}=2 x \partial_{x}-4 y^{3} \partial_{y}=0 \Leftrightarrow(x, y)=(0,0) \\
\frac{\partial^{2} f_{2}}{\partial x_{i} \partial x_{j}}=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

So again, the critical point is degenerate. For any fixed x_{0}, as $y \rightarrow \pm \infty$ we have $\lim _{y \rightarrow \pm \infty} f_{2}\left(x_{0}, y\right)=-\infty$, while for any fixed $y_{0}, \lim _{x \rightarrow \pm \infty} f_{2}\left(x, y_{0}\right)=\infty$. Near the origin, then, $f_{2}(x, y)$ decreases in either of the y-directions, while it increases in either of the x-directions
3) Degenerate critical points can be isolated, but we can say nothing about the local behaviour, $f_{3}(x, y)=x^{2}-y^{3}:$

$$
\nabla f_{3}=2 x \partial_{x}-3 y^{2} \partial_{y}=0 \Leftrightarrow(x, y)=(0,0)
$$

So again, f_{3} has an isolated critical point at the origin, and the Hessian at this point is:

$$
\frac{\partial^{2} f_{2}}{\partial x_{i} \partial x_{j}}=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)
$$

So the critical point is degenerate. Now notice that if we fix x_{0}, then $f\left(x_{0}, y\right) \rightarrow \infty$ as $y \rightarrow-\infty$, while $f\left(x_{0}, y\right) \rightarrow-\infty$ as $y \rightarrow \infty$. This means that at the origin, $f_{3}(x, y)$ behaves "non-degenerately" in the x-direction, while in the y-direction, the function can increase or decrease depending on whether or not we choose to increase or decrease y !
4) Degenerate critical points need not be isolated, $f_{4}(x, y)=x^{2}$: This is a critical difference between the non-degenerate case and the degenerate case.

$$
\nabla f_{4}=2 x \partial_{x} \Leftrightarrow(x, y)=(0, y) \forall y \in \mathbb{R}
$$

5) Degenerate critical points can look like a minimum in any direction, but still not be a local minimum for the function, $f_{5}(x, y)=\left(y-x^{2}\right)\left(y-2 x^{2}\right)$: Let $(a t, b t)$ be any line through the origin, then

$$
\begin{gathered}
g(t)=f_{5}(a t, b t)=\left(b t-a^{2} t^{2}\right)\left(b t-2 a^{2} t^{2}\right) \\
g^{\prime}(t)=\left(b-2 a^{2} t\right)\left(b t-2 a^{2} t^{2}\right)+\left(b t-a^{2} t^{2}\right)\left(b-4 a^{2} t\right) \Rightarrow g^{\prime}(0)=0 \\
g^{\prime \prime}(t)=-2 a^{2}\left(b t-2 a^{2} t^{2}\right)+\left(b-2 a^{2} t\right)\left(b-4 a^{2} t\right)+\left(b-2 a^{2} t\right)\left(b-4 a^{2} t\right)-4 a^{2}\left(b t-a^{2} t^{2}\right) \Rightarrow g^{\prime \prime}(0)=2 b^{2}>0
\end{gathered}
$$

So by the second derivative test, $g(t)$ has a minimum at zero for any line passing through the origin.
Now we can see that $(0,0)$ is not any local minimum for $f_{5}(x, y)$, even though it is a minimum for any line passing through the origin. First, calculate that $f(0,0)=0$. Now, see that $f_{5}(x, y)>0$ if and only if $y<x^{2}$ or $y>2 x^{2}$, and $f_{5}(x, y)<0$ if and only if $y>x^{2}$ and $y<2 x^{2}$. Let $S=$ $\left\{(x, y) \in \mathbb{R}^{2} \mid f_{5}>0\right.$ or $\left.f_{5}<0\right\}$

Draw picture
Recall that a point $\left(x_{0}, y_{0}\right)$ is a local minimum for f_{5} if and only if there exists a neighbourhood U around $\left(x_{0}, y_{0}\right)$ such that $f(x, y)>f\left(x_{0}, y_{0}\right)$ for all $(x, y) \in U$. Notice that this could never be the case, for $f(0,0)=0$ and $(0,0) \in \partial S$ implies that any ball $B_{\epsilon}(0,0)$ has points in it such that $f(x, y)<0$.

Exercise 1.1. Suppose that $S \subseteq \mathbb{R}^{n}$ is compact, and $f: S \rightarrow \mathbb{R}$ is a smooth function with nondegenerate critical points. Explain why f can only have finitely many critical points.

Problem 3. (Folland 2.9.19) Let A be a symmetric $n \times n$ matrix, and let $f(x)=x^{T} A x$ for $x \in \mathbb{R}^{n}$. Show that the maximum and minimum of f on the unit sphere $|x|^{2}=1$ are the largest and smallest eigenvalues of A.
(1) Proceed by method of Lagrange multipliers
(2) Want to find extrema of $f(x)$ subject to the constraint $|x|^{2}=1$
(3) Write $f(x)=\sum_{i j} A_{i j} x_{i} x_{j}$ and let $G(x)=1-\sum_{i} x_{i}^{2}$
(4) The condition to optimize f subject to G is given by:

$$
\nabla f=\lambda \nabla G
$$

(5)

$$
\begin{gathered}
\nabla f=\partial_{k} f=\sum_{i j}\left(A_{i j} \delta_{i k} x_{j}+A_{i j} \delta_{j k} x_{i}\right)=\sum_{j} A_{k j} x_{j}+\sum_{i} A_{i k} x_{i}=2 \sum_{j} A_{k j} x_{j}=2 A x \\
\nabla G=\partial_{k} G=\sum_{i} 2 x_{i} \delta_{i k}=2 x_{k}
\end{gathered}
$$

(6) Then the condition for extremizing f is that $A x=\lambda x$
(7) Since A is symmetric, it is diagonalizable, so pick an orthonormal basis $\left\{y_{j}\right\}$ of \mathbb{R}^{n} consisting of eigenvectors of A; so $A y_{j}=\lambda_{j} y_{j}$.
(8) In this basis, we may write $x=\sum_{j} c_{j} y_{j}$, so that $f(x)=x^{T} A x=\sum_{i} c_{i}^{2} \lambda_{i}$
(9) Now it is clear that the extrema have values $f\left(y_{j}\right)=\lambda_{j}$, and thus the global max and min of f are the largest and smallest eigenvalues of A, respectively.

